Goldbach's Conjecture(Number theory)

Now i am going to discuss about an important theory of number theory that is Goldbach's conjecture.Hope u will enjoy:



For any integer n (n ≥ 4) there exist two prime numbers p1 and p2 such that p1 + p2 = n. In a problem we might need to find the number of essentially different pairs (p1, p2), satisfying the condition in the conjecture for a given even number n (4 ≤ n ≤ 215). (The word ‘essentially’ means that for each pair (p1, p2) we have p1  p2.)For example, for n = 10 we have two such pairs: 10 = 5 + 5 and 10 = 3 + 7.
To solve this,as n ≤ 215 = 32768, we’ll fill an array primes[32768] using function seive. We are interested in primes, not greater than 32768.
The function FindSol(n) finds the number of different pairs (p1, p2), for which n = p1 + p2. As p1  p2, we have p1  n/2. So to solve the problem we need to find the number of pairs (i, n  i), such that i and n  i are prime numbers and 2 ≤ i  n/2.
int FindSol(int n)
{
       int i, res=0;
       for(i=2;i<=n/2;i++)
              if(flag[i] && flag[n-i])
                    res++;
       return res;  
}
******another effective******
For this all the primes should be generated first
int FindSol(int n)
{
    int i, res=0;
//here prime[i] is a prime if (n-prime[i]) be prime then whole pair will be prime;
    for(i=0; prime[i]<=n/2; i++)       {
        if(table[n-prime[i]]==false) res++;
    }
    return res;



By the help of this theory,i hope u all will solve the following problems
1.http://www.lightoj.com/volume_showproblem.php?problem=1259
2.https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=627

৩টি মন্তব্য: